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Itis important to remember that all of these results, including Wick’s theorem,
are true only for quantum Gaussian density operators, and that for most interact-
ing systems such density operators are normally not valid. To use these results
more generally one must make approximations.

10.5 Coherent States

The study of both coherent light and of ultra-cold Bose gases is necessarily the
study of highly occupied states of Bose particles. The two most important kinds of
such states are number states and coherent states. Number states are eigenstates of
the number operator N = a'a. Since in quantum-optical situations, photons are
not conserved, a photon number state is very hard to create and preserve, whereas
a coherent state is much more robust.

Inan ultra-cold gas, the fact that the total number of atoms in a gas is absolutely
conserved might lead one think that number states would be the most relevant for
their study. Surprisingly, this is not so, and the coherent state |a), which satisfies
the defining eigenvalue equation

ala) = ala), (10.5.1)

and does not correspond to a definite number of particles, still provides a valuable
tool for the study of ultra-cold gases.

10.5.1 Properties of the Coherent States

a) Expression in Terms of Number States: The only solution to the defining
equation (10.5.1), which also satisfies (a|a) =1 is (up to a phase)

o0 n
) =exp(-L1al?) ¥ —=In). (10.5.2)
n=o0 vV n!

b) Action of Creation and Destruction Operators: Using a|n) = /n|n— 1) and
a'lny = vn+1|n+1), itis straightforward to show that

ala)

ala),

0
flay = la* + 1 —
a'la) (a +26a)|a)'

(10.5.3)
(ala' = (ala*, +

L 0
(ala = |a+z- - (al
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¢) Unitary Transformation of the Vacuum: We can also show that
&) = exp (aaT -a a) 10). (10.5.4)

This involves the use of the Baker-Hausdorff formula: For any two operators A
and B, such that [A, B] commutes with both of them, one can write

exp(A+ B) = exp(A) exp(B) exp(—3[A, Bl), (10.5.5)

= exp(B) exp(A) exp (3[4, B), (10.5.6)

and this is proved in Quantum Noise. Using this identity, we see that (10.5.4) gives

|@) = exp (—%|a|2) exp (aa“) exp(—a*a)|o), (10.5.7)
and noting that g|0) = 0, we see
B 12 an(a'f)n

lay = exp(-31al®) Y 10 (10.5.8)

which yields (10.5.2) when we use the expression

a*n
In) = mIO). (10.5.9)
d) Scalar Product:
(@lpy = exp(a”B-Lla®-3181%), (10.5.10)
KalB))? = exp(~la-pP?). (10.5.11)

Notice that no two coherent states are actually orthogonal to each other. However,
if @ and B are significantly different from each other, the two states are almost
orthogonal.

e) Completeness Formula:

1

1= = f d?ala)al. (10.5.12)
Here,

a=ax+iay, d*a=dayday, (10.5.13)

and the integral is over the whole complex plane.

Exercise 10.2 Trace in Terms of Coherent States: Show that the resolution of the
identity (10.5.12) implies that

Tr{A} = % f d%a(alAla). (10.5.14)
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f) Normal Products: In evaluating matrix elements, normal products of opera-
tors in which all destruction operators stand to the right of creation operators, are
useful. Thus,

(ala“aa“lﬂ) = (ala"a*a+ a“[a,a*]lﬁ), (10.5.15)
= (ala'a’a+a'lp), (10.5.16)
= (@*?B+a*)alp). (10.5.17)

The symbol :: around an expression means that it is to be considered a normal
product; thus,

‘a+aa+a)=a’ +a®+24'a (10.5.18)

From (10.5.1) it follows that the matrix element between coherent states (a| and
|8) of any normally ordered function F(a',a) of creation and destruction opera-
tors is given by F(a*, f). Thus, for example,

(al:(a+a"3:1py = (B+a™)>. (10.5.19)

g) Poissonian Number Distribution of Coherent States: The state |n) is known
as an n-quantum state and the probability of observing n quanta in a coherent
state |a) is

lal2
2_ e lal |a|2n

n
Pa(n) = [nla)f = |exp(-3a®) = , (10.5.20)
n.

NI n!

which is a Poisson distribution with mean |a|?. Since the number n corresponds
to the eigenvalue of the number operator N, we have

(N) =<(alNla)=Y nP(n)=lal, (10.5.21)
r

(N%) = (ala'ad' ala) = (ala'a'aa+ a' aley = 1al* +al®. (10.5.22)

Hence,

var[N] = lal* = (N), (10.5.23)

as required for a Poisson.

Exercise 10.3 Action of exp (Aa'a) on a Coherent State: If A =y + iv, show that the
definition (10.5.2) of the coherent state implies that

exp(Aa' a)la) = exp (%mlz(ez” - 1)) |ael> . (10.5.24)
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10.5.2 The Harmonic Oscillator

The harmonic oscillator Hamiltonian can be written

Hyo = ho(a'a+}), (105.25)
and the result of Ex. 10.3 shows that the coherent state wavefunction

lye, t) = exp(—iHuot/h)|ao), (10.5.26)

= e W2 |e ot gy, (10.5.27)

is a solution of the equations of motion.
Let us consider the situation when we drive this with an external field. This can
be done by the Hamiltonian

Hpriven = h{ ata+ )+g*(t)a+g(t)a“}. (10.5.28)
The Heisenberg equation of motion for a(#) is
dg(tt) = % [ Hpriven, (1) (10.5.29)
= —iwa(t) —-ig(y), (10.5.30)
which has the solution
a(t) = e @q0)-1i fo tdt’e_i“’"_’l)g(t'), (10.5.31)
= e ! a(0) + a(r). (10.5.32)

a) Initial Vacuum State: If the initial state of the system corresponds to |vac,0),
the vacuum of a(0), then initially

a(0)|vac,0y = 0. (10.5.33)
Thus, at the time ¢ we have

a(t)|vac,0) = a(t)|vac,0). (10.5.34)

This means that this state is equivalent to the coherent state of argument a(¢) with
respect to the the Heisenberg operator at time ¢, that is

lvac,0) = |a(?),1). (10.5.35)

Exercise 10.4 Schrédinger Picture: Show that it follows from the Heisenberg pic-
ture result (10.5.34), that in the Schrédinger picture the states are described in terms of
coherent states of the time-independent operators a,a’, and the solution of the Schrod-
inger equation
diy,n

dt
is the coherent state |a(t)).

in

= Hpyivenl¥, 1), (10.5.36)
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b) Initial Coherent State: If the Schrodinger picture initial state is the coherent
state |@g), then it is straightforward to show using (10.5.32) that the solution of the
Schrédinger equation is

lw, &) = |@e™™ +a(n). (10.5.37)

10.6 Fluctuations in Systems of Fermions

If we take instead Fermi particles the results are, in a formal mathematical sense,
surprisingly similar to those for Bosons. Of course the physical consequences of
the differences that are in fact present, are profound.

10.6.1 The Single-Mode System

a) Moments: Asin (10.3.4), we find
A 1

o Ry e (10.6.1)
Also, for consistency, we note that

(b'b'bby = Lazi(lm)—o (10.6.2)

T1+A7 daz o o

a result which is obvious from the anticommutation relations.
b) Variance: Using the anticommutation relations it follows that

0 = b bbby = —(b" bbby + (b'bY, (10.6.3)
so that (N?) = 71 and thus

var[N] = i1 — ii?, (10.6.4)

which differs from (10.3.7), the corresponding result for Bosons, only by the sign
of the term in 722

10.6.2 Fermi-Gaussian Systems

We define a Fermi-Gaussian density operator in a similar way to that for Bosons,
except that there are no Fermi mean fields. A Fermi-Gaussian density operator
therefore has the form

p= Nexp{—Z(A,-,-b,Tb,- +Bijb]b] +B;‘jb,-bj)}. (10.6.5)

)

a) Diagonal Fermi-Gaussian Density Operator: This takes the form

Pdiag = NeXp{—Zmb}bi } (10.6.6)
i

where the eigenvalues x; > 0 characterize the density operator.



